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We show the existence of natural subsurface channels that guide acoustic waves for periodic arrays of
spherical grains under the influence of gravity. Downward propagation of acoustic rays can be stopped alto-
gether as a result of a caustic whose origin lies in the continuous bending of rays as a result of a gravitationally
induced increase of rigidity with depth. Upward propagation of acoustic rays, on the other hand, is attenuated
by Bragg reflection arising from the continuous diminishing of rigidity in the direction of the surface, resulting
in a vertical propagation constant that approaches a limited allowed value. Waves with different frequencies are
shown to travel at different depths below the surface. The key conditions for the manifestation of the predicted
wave modes are microscopic periodicity and macroscopic inhomogeneity of the medium.
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INTRODUCTION

The phenomenon of wave guiding arises from multiple
reflections of a field at an interface or as a consequence of
spatially inhomogeneous material properties resulting in di-
rectional wave propagation. The simplest qualitative illustra-
tion of wave guiding from multiple reflection is shown in
Fig. 1�a�, where the propagation of a field along the x direc-
tion in a layer of a macroscopically homogeneous and mi-
croscopically continuous material is controlled by the reflec-
tion of the plane waves at two horizontal interfaces located
at y=ys=0 and y=yb. We denote this configuration as a
“surface-bottom” �s/b� configuration. In a macroscopically
homogenous and microscopically continuous media the two-
dimensional wave dispersion relation acquires the simple
form

�2 = c2�kx
2 + ky

2� , �1�

where kx and ky are wave numbers for the x and y directions,
c is the sound speed, and � is the frequency. The term “mi-
croscopically continuous medium” is used here for a hypo-
thetical medium where any possible structuring of a medium
�even at atomic level� is neglected. Consequently the modi-
fication of wave dispersion relations due to real atomistic
structure of the materials, for example acoustic anisotropy of
the crystals, is neglected in Eq. �1�. For a constant wave
velocity c in the layer between ys and yb, the direction of the
ray, defined by the slope kx /ky, does not change inside the
slab for a fixed horizontal propagation constant kx. Their di-
rection changes abruptly at the interfaces in accordance with
the Snell’s law. In the case of total internal reflections the
guided modes are not attenuated. In the case of vertical in-
homogeneity of the physical properties of the slab, the wave
speed becomes depth dependent, that is, c=c�y�, so that the
vertical propagation constant ky becomes depth dependent,

ky =��� /c�y��2−kx
2, and the direction of ray propagation

changes continuously across the width of the slab, which is

described as a bending or refraction of the rays �1�. If at
some depth y=yc the condition � /c�yc�=kx, defining the po-
sition of a so-called caustic �1�, is satisfied, then it follows
that ky�y=yc�=0, the rays become horizontal, and, in the case
of c�y� continuously increasing with depth, the waves cannot
propagate deeper into the medium. The rays are incident at
the level y=yc at zero angle and change downward propaga-
tion for upward propagation. It follows that the field in the
region y�yc becomes evanescent. Consequently a caustic, as
a natural wave-guiding surface, can replace in Fig. 1�b� the
lower wave-guiding interface at yb. Such wave guiding can
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FIG. 1. Various physical realizations of a horizontal wave guide.
�a� An homogeneous surface-bottom wave guide. �b� Wave guiding
between a surface and a caustic. �c� Acoustic channeling between
mechanically free surface of unconsolidated disordered granular
medium and a caustic. �d�, �e� Wave guiding in a microscopically
periodic and macroscopically inhomogeneous media. �d� Gap-
bottom undersurface wave guiding. �e� Gap-caustic under-surface
wave guiding.
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be referred to as “surface-caustic” �s/c� wave guiding. Natu-
ral surface-caustic wave guiding is known, for example, for
acoustic waves near the interface of water with marine sedi-
ments �2,3� and near the interface of sand �an example of an
unconsolidated granular medium� with air �4–8� as shown in
Fig. 1�c�. For the typical sublinear power-law increase of
material rigidity with depth the rays are incident on the sur-
face vertically �7,8�. Note that in the case of nonmonotonous
variation of the wave velocity along the y axis, caustics can
stop both downward and upward propagation of waves as is
known in the case of deep sound channels in the ocean �9�.

Here we hypothesize that another mechanism, different
from caustic natural wave guiding, can replace the upper
wave-guiding interface in macroscopically inhomogeneous
materials exhibiting microscopic periodicity. Our idea is
based on the thesis that if the medium properties vary on a
microscopic scale with a period D along the y direction, then
there exists a maximum allowed value of the wave number
ky

max=� /D for the vertical propagation constant. The waves
with larger ky are evanescent due to effective multiple scat-
tering. The phenomenon of limitation of vertical propagation
constants is well documented for x-ray and Bragg diffraction
in crystals, optical waves in photonic crystals �10�, acoustic
waves in layered structures �1�, and phononic crystals �11�.
For macroscopically inhomogeneous, microscopically peri-
odic media, from the existence of ky

max, which implies a
maximum allowed frequency �max, it follows that there must
be a low-frequency boundary for the gap of frequencies for-
bidden for wave propagation. In accordance with the disper-
sion relation �1�, the propagation of a ray in the direction of
diminishing wave velocity is accompanied by an increase of
the propagation constant ky. If at some depth y=yg, called in
the following the “gap surface” or simply the “gap,” the
condition ky�y=yg�=ky

max is satisfied and the vertical propa-
gation constant approaches the limited allowed value, then at
this level the wave will be Bragg reflected. In the case where
c�y� monotonously diminishes in the direction toward the
surface, waves in the region y�yg are evanescent. We de-
note two new predicted configurations presented in Figs. 1�d�
and 1�e� as “gap-bottom” �g/b� and “gap-caustic” �g/c� wave
guiding, respectively. It is important that both channels yg
�y�yb and yg�y�yc are “underground” in the sense that,
if the gap position at y=yg is sufficiently separated from
medium surface at y=ys, then the evanescent field does not
reach the surface, i.e., the waves cannot tunnel to the surface
�11�. Hence they become “invisible” from the surface.

Although our hypothesis is straightforward, the arguments
above cannot be considered as rigorous because the assumed
periodicity at the microscopic level is necessarily accompa-
nied by anisotropy in the properties of the medium and the
wave velocity dispersion. Neither of these effects are ac-
counted for in Eq. �1�. In the following, we develop an ana-
lytical theory of the gap-bottom and gap-caustic channels for
a particular case of acoustic waves in unconsolidated three-
dimensional �3D� arrays of spherical elastic grains under
gravity. Gravity induces a stress inside the packing of
spheres dependent on the distance from the mechanically
free, upper surface at y=ys, which, as a result of the strong
dependence of the rigidity of the Hertz-Mindlin contacts
�12,13� between the spheres on stress, causes a depth-

dependent sound velocity. The weak dependence of density
on depth can be neglected. The medium under consideration
is microscopically periodic with a spatial period of the order
of the grain diameter D �leading to wave velocity dispersion�
and macroscopically inhomogeneous along the direction of
the gravity field. In addition it is elastically anisotropic con-
sisting of a discrete ordered system of spheres. We incorpo-
rate both anisotropy and dispersion of wave velocity, reflect-
ing microstructural features of the system, into a continuous
description of wave guiding and prove the existence of gap-
bottom and gap-caustic wave-guide acoustic modes by deriv-
ing their dispersion relations and determining the spatial
boundaries of the underground channels.

It is of note that wave-guiding phenomena in media with
periodically varying properties have recently attracted the in-
terest of acousticians �14–16�. Much of the work in this field
considers a wave-guiding surface at the interface between a
continuous media and a macroscopically homogeneous crys-
tal, resulting in an elastic-wave band-gap material. In terms
of Fig. 1�a�, such a model reduces to replacing the media in
the regions y�ys and/or y�yb by a band-gap material.
There has also been interest in the theory of surface acoustic
waves where the discrete nature and internal periodicity of
the crystals is taken into account, leading to wave dispersion
and band gaps �see Ref. �17�, and references therein�. How-
ever, such work has focused only on macroscopically homo-
geneous media. Here we hypothesize that gap surfaces can
exist in the band-gap material itself due to the natural influ-
ence of gravity, and that these surfaces in combination with
other wave-guiding surfaces create natural channels for hori-
zontal wave propagation.

THEORY

We hypothesize wave-guiding phenomenon in periodic
three dimensional packing of spheres, which is a paradig-
matic example for demonstrating the dependences of acous-
tic wave velocities on external loading in sediments �18–20�.
We chose for analysis a simple cubic �sc� lattice of spheres
�21–23�, which permits understanding of the most important
anisotropy-related features of the phenomenon, but which
requires much less lengthy algebra than the analysis of face
centred cubic �19,20� and hexagonal close �18� packing. Two
different orientations of the packing relative to the gravity
field are analyzed. The first configuration with the �0,1,0�
axis of the granular lattice parallel to the gravitational accel-
eration g� is presented in Fig. 2�a�. The second configuration
where the �1,1,0� axis of the granular lattice is parallel to g� ,
as shown in Fig. 2�b�, is obtained by 45° rotation of the first
around the z axis. We denote these configuration as � and �

configurations, respectively. To demonstrate the physical
principles of the wave-guiding phenomenon we analyze, ne-
glecting rotations of the beads, the propagation of shear
waves polarized along the z axis with the wave vector k� lying
in the �x, y� plane, i.e., kz=0. We study wave process in
macroscopically inhomogeneous medium in the framework
of geometrical acoustics �the Wentzel-Kramers-Brillouin
�WKB�� approximation �1,24�, which is valid under the con-
dition that relative changes of the acoustic wave number on
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the scale of the acoustic wavelength are small, i.e., ��� k� /k2

�1. In the array of spheres, the acoustic wavelength can be
of the order of the sphere diameter D; consequently, ray
theory should be valid only if the material properties vary
slowly on the length scale of D. The wave dispersion relation
in ray theory is derived for a macroscopically homogeneous
material but with the parameters of the dispersion relation
allowed to vary slowly with coordinate �1�.

The equation of motion for the horizontal column
of spheres centered at x=Dm, y=Dn, where m and n are
integers, in the � configuration is M�2um,n /�t2=��um,n+1
+um,n−1+um+1,n+um−1,n−4um,n�, where M is the mass of the
sphere, um,n is its displacement along the z axis, and � is the
shear rigidity of the contact. The solution of these equations
in the form um,n�exp�i�t− ikxDm− ikyDn� leads to the aniso-
tropic dispersion relation

��/�max�2 = sin2�Dkx/2� + sin2�Dky/2� , �2�

which predicts that, due to the microscopic periodicity of the
medium, there is dispersion in the wave velocity. The al-
lowed propagation constants are restricted by kx

max=ky
max

=� /D, and there exists a forbidden domain of high frequen-
cies for all the directions of bulk wave propagation. In Eq.
�2� �max�2�� /M denotes the maximum frequency allowed
for bulk shear wave propagation along the surface, i.e., when
ky =0.

A granular medium is modelled above as a packing of
perfectly rigid spheres connected by springs. This is a well-
confirmed model for a packing of elastic beads in contact in
the case where due to weak loading the diameter d of the
contact between the spheres is much smaller than the diam-
eter D of the beads �d�D�. In this situation the Hertz-
Mindlin theory of contacts �13� predicts that a small volume
of a bead near the contact �of a characteristic dimension d of
the order of the contact diameter� plays the role of a soft
spring, while the rest of the bead can be considered as being
perfectly rigid. The effective rigidity of the spring is con-

trolled not just by the shear modulus 	 of the material com-
posing the beads but also by the diameter of the contact �
�	d and is small under weak loading. As a consequence the
acoustic waves are propagating in the weakly loaded granu-
lar medium much slower than inside the individual beads.
This slow motion could be qualitatively viewed as a slow
transfer of vibrations from one bead to another because of
weak coupling between the beads and multiple scattering of
fast acoustic waves inside the beads resulting in the motion
of the beads as nearly rigid masses. The characteristic reso-
nance frequency of vibration of a rigid bead near its equilib-

rium position in the packing can be estimated as �max
��� /M ��	d / �
D3�, where 
 denotes the density of the
beads. This is also an estimate for the maximum frequency
of the propagating acoustic waves for the model of rigid
spheres connected by the springs. Characteristic resonance
frequency of internal vibration of an individual elastic bead
�due to its elasticity� can be estimated as an inverse of a
time for acoustic wave propagation across the bead �res
��	 /
 /D��	 / �
D2�. Consequently �max /�res��d /D and
under the condition �d /D�1 there is a clear separation of
the frequency scales. At frequencies lower than �res the phe-
nomenon of slow wave propagation including the band-gap
effect, taking place around �max, can be described by the
model of rigid masses connected by the springs. Note that in
this model the absorption of acoustic waves in the material
composing the grains and also absorption due to possible
interaction of grains with air, saturating the pores of the
packing, is completely neglected in order to concentrate at-
tention on the effects related to microscopic periodicity of
inhomogeneous medium.

The predictions based on Eq. �2� are not modified quali-
tatively if rotations of the spheres are included in the analy-
sis. The existence of the additional allowed frequency band
for the rotational waves, similar to the ensemble of optical
phonons in crystals, separated by a gap from the frequency
band of shear waves �22,23,25,26� is not essential for the
purposes of our analysis.
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FIG. 2. Wave guiding of bulk acoustic waves between a gap surface and a caustic in an inhomogeneous granular crystal. The uncon-
solidated packings of Hertz-Mindlin elastic spheres of different symmetries and orientations relative to the gravity field are presented in the
insets. The in-depth positions of the wave-guiding surfaces are plotted as the functions of the dimensionless frequency � and the dimen-
sionless wave number qx of the bulk acoustic waves. Integer number n �n�0� counts the layers of periodic granular medium starting from
its surface. The surface of Bragg reflection or the gap surface is located at a depth n=ng and the caustic surface is located at a depth n
=nc.
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The dispersion relation for the � configuration can be
derived from Eq. �2� by rotation of the coordinate system. If,
in both configurations, the propagation constants are normal-
ized to the maximum allowed value along the x direction
kx,y /kx

max�qx,y, and the frequency is normalized to its band
edge value �max�n� for bulk waves traveling in the x direc-
tion � /�max�n����� ,n�, the dispersion relations for � and
� configurations take the form

�2��,n� /�� = sin2��qx/2� + sin2��qy/2�

− �1  1�sin2��qx/2�sin2��qy/2� , �3�

where the index n, which numbers the layers of the array
along the vertical coordinate, accounts for the macroscopic
inhomogeneity of the medium in the gravity field. It should
not be forgotten that the distance between successive hori-
zontal, and vertical, layers of spheres is different in the two
configurations considered here �see Fig. 2�, leading to differ-
ent values of kx

max and �max�n�. In the accepted normaliza-
tion, the position of the caustic n=nc defined from the con-
dition qy =0 is the same in both configurations

�2��,nc
� /�� = sin2��qx/2�, nc

� /� = �−1��,sin��qx/2�� .

�4�

The anisotropy influences nc
� /� in Eq. �4� implicitly through

the dispersion relation of the wave-guide mode �=��kx�,
which is different in the two configurations. The positions of
the gaps, n=ng, defined from the condition qy =1, are differ-
ent in the two configurations

�2��,ng
� /�� = 1 � sin2��qx/2�,

ng
� /� = �−1��,�1 � sin2��qx/2�� . �5�

They are influenced by the anisotropy, which controls the
deviation of ng

� /� from the horizontal level in Fig. 2, explic-
itly. Assuming that natural loading by gravity induces mo-
notonously increasing �max�n� and monotonously decreasing
��� ,n�, we arrive from comparison of Eqs. �4� and �5� at the
following conclusions. In the � configuration nc�ng and the
gap-caustic wave guiding is potentially possible for all al-
lowed horizontal propagation constants 0�qx�1 �see Fig.
2�a��. In the � configuration, gap-caustic wave guiding is
potentially possible only in a bandwidth of half this width
0�qx�1 /2 �see Fig. 2�b��. For larger propagation constants,
the gap is below the caustic nc�ng. The striking difference
between two configurations is the consequence of anisotropy
alone. In the � configuration the maximum spatial period,
the smallest kmax, and the lowest �max for the bulk modes are
all along the surface. For rays propagating at an angle to the
surface, the gap edge �max is not lower, so that wave-guide
modes even with qx=1 are allowed. In the � configuration,
the minimum spatial period, the largest kmax, and the highest
gap edge �max for the bulk modes are all along the surface.
For rays propagating at an angle to the surface, the allowed
spectral interval 0����max is narrower. Thus, for example,
rays with qx=1 and any qy �0 cannot propagate, they are
purely evanescent. In the propagating gap-caustic wave-
guide mode, the vertical propagation constant should con-
tinuously change from qy =0 at the caustic to qy =1 at the

gap. It follows that the interval 0�qx�qx
max for the existence

of gap-caustic wave guiding is determined by the condition
that even for qx=qx

max, all values of qy in the range 0�qy
�1 should be allowed. In the � configuration, this results in
qx

max=1 /2 �Fig. 2�b��. Thus as a consequence of the packing
anisotropy the domain 0�qx�qx

max of a possible existence
of wave-guiding phenomena �for which the caustic should be
deeper than the gap: nc�ng, the shaded and/or grey regions
in Fig. 2� is different in two configurations.

Using a more lengthy algebra we have derived the dis-
persion relations for the propagation of plane shear acous-
tic phonons in hexagonal close packing �hcp� of friction-
less beads. The dispersion relations for the waves polar-
ized perpendicular �hcp�� to the planes with hexagonal
arrangement of the beads �in the coordinate system pre-
sented in inset hcp� in Fig. 2�b�� are M�2=4��1
��1+4 cos�kxD /2��cos�kxD /2�+cos�ky

�3D /2�� /3	. These
relations describe both optical phonons branch and acoustical
phonons branch. The latter is specified by the condition
��kx=0,ky =0�=0 and is the subject of our analysis here. The
dispersion relations for the acoustical phonons polarized par-
allel �hcp
� to the planes with hexagonal arrangement of the
beads �parallel to z axis in insets hcp



 and hcp

� in Fig. 2�a��

for the case hcp


, where the hexagon is parallel to the surface

of the packing, are M�2=2��sin2�kx
�3D /4�+sin2�kyD /�6��.

Here � denotes the normal rigidity of a Hertzian contact. The
dispersion relations for two other configurations presented by
insets hcp� and hcp


� in Fig. 2�a� can be obtained from those
given above by the transformation of the coordinate system.
In Figs. 2�a� and 2�b�, after the normalizations performed
similarly to the sc case, we present the positions of the gaps
and the caustics for the orientations hcp� and hcp
 of the
hexagonal plane in space. These results provide assurance
that there is an allowed zone for channeling in the case of
close packing and that the role of anisotropy in sc and hcp
cases could be similar. Moreover, there is no qualitative dif-
ference between the dispersion relations for some particular
hcp configurations, such as hcp



 or hcp

� �Fig. 2�a�� and sc�

dispersion relations in Eq. �2�. In both hcp
 configurations
presented in Fig. 2�a� the domain of wave guiding coincides
with that for the sc� configuration. Due to this the predic-
tions derived below for the sc� case are valid for the hcp


case as well. The domains of existence of wave guiding phe-
nomena in hcp� configurations are shaded in Figs. 2�a� and
2�b�. In the hcp� configuration presented in Fig. 2�b� the
domain of wave guiding coincides with that for the sc� con-
figuration. To establish real spatial positions n=nc�qx� and
n=ng�qx� for the boundaries of the wave guide the curves in
the figure should be rescaled after finding the dispersion re-
lation �=��qx� for the guided acoustic modes �see Fig. 3�.

In order to predict with the help of Eqs. �4� and �5� the
position of the gap-caustic channel under the surface, the
dispersion relation of the wave-guide modes �=��qx� should
be found. For deriving the dispersion relation we are using
the geometrical acoustics approximation and the Bohr-
Sommerfeld condition of constructive interference �27�, also
known in acoustics as the condition of transverse resonance
�28�. The phase shift accumulated by a ray in its vertical
propagation from the upper wave-guiding surface at n=nmin
to the lower wave-guiding surface at n=nmax and back
should be an integer number p of 2�
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�
nmin

nmax

qy � 
nmin

nmax

qydn = p, p = 1,2,3, . . . , �6�

where the summation has been transformed into integration
based on the geometrical acoustics approximation for a slow
dependence of qy on the discrete coordinate n, which, con-
sequently, can be treated as a continuous one. However it is
well-known that geometrical acoustics is not valid in the
vicinity of caustics �1,24�. It can be also verified that the
validity condition ��ky /�y� /ky

2�1 necessary for geometrical
acoustics does not hold in the vicinity of the gap either. Nev-
ertheless the condition in Eq. �6� becomes progressively
more and more precise with increasing p when the additional
constant �p-independent� phase losses accumulated in the do-
mains of invalidity of the geometrical acoustics approxima-
tion become negligible in comparison with the total phase
shift increasing proportionally p. That is why, in order to be
sure of the validity of all the effects predicted below in the
framework of ray acoustics, we will assume in the following
p�1 �although already p�3 could be precise enough in
practice �1,7,8��.

To proceed further in the analysis we accept Hertz-
Mindlin model for the shear rigidity of the contacts between
the spheres �12,13�. In this model the rigidity is the nonlinear
power-law function of the normal force F acting on the con-
tact �i.e., ��F1/3�, resulting in the following unified presen-

tation of �max�n� for both configurations �max�n�
=�max�1�n1/6, although �max�1� is different in the � and �

configurations (�max
� �1�=21/12�max

� �1�=2� 3�1−��
2−� �1/2

�� 4E
3�1−�2�M �1/3� gD

2 �1/6, where � is the Poisson’s ratio and E is
the Young modulus of the spheres). Introducing an
n-independent dimensionless frequency ��� /�max�1� we
reduce the above derived general presentation in Eqs. �3�–�5�
to a particular one for Hertz-Mindlin contacts under gravity

qy
� /� = �2/��arcsin ���2n−1/3 − s2�/�1 � s2 − s2�

� qy
� /���2n−1/3/a� /�,s2/a� /�� , �7�

nc
� /� = ��/s�6, ng

� /� = ��/�1 � s2�6, �8�

where we have used the compact notations s�sin��qx /2�
and a� /� �1�s2−s2. The domains of possible wave guiding
described by Eq. �8� are presented in Fig. 2. However, it
should be expected that, when the dispersion relation �
=��qx , p� is found, the shape of the wave-guiding domain on
the plane �qx ,n� might be very different from what is given
in Fig. 2 �see Fig. 3�.

The integration in Eq. �6�, when on substituting Eq. �7�,
can be carried out analytically. The dispersion relation for the
modes guided between two levels in the depth of the gravity-
loaded periodic packing of elastic spheres is
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FIG. 3. Wave-guide acoustic modes channeling between a gap and a caustic in an inhomogeneous granular crystal. The dispersion

relations �̄=�̄�qx� for the gap-caustic acoustic modes guided between the gap at depth n̄= n̄g
g/c and the caustic at depth n̄= n̄c

g/c are presented
in �a� and �c� for � and � configurations, respectively. The corresponding under-surface channels are grey in �b� and �d�.
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nmin

nmax

qy��2n−1/3/a� /�,s2/a� /��dn = �6�I��2nmax
−1/3/a� /��

− I��2nmin
−1/3/a� /��� = p , �9�

where

I��� =
2

�a3� arcsin �� − s2/a
�3

−
1

8c2�3b� + 2c

�2
�− �2 + b� − c

+
3b2 − 4c

2�c
arctan� b� − 2c

2�c�− �2 + b� − c
���,

a � a� /�, b � 1 +
2s2

a
, c � �1 +

s2

a
� s2

a
.

It should not be forgotten that the positions of the levels nmin
and/or nmax could themselves be dependent on � and qx as,
for example, in the configurations with gaps and/or caustics.
In these cases Eq. �9� together with Eq. �8� constitute a self-
consistent problem of simultaneous determination of the
p-mode dispersion relation and the boundaries of the channel
where this mode propagates.

The dispersions relations for the gap/caustic mode of or-
der p and the boundaries of the channel, evaluated with the
help of Eq. �9� �where nmin=ng and nmax=nc� and Eq. �8�, are
presented in Fig. 3. The theory predicts �see Figs. 3�b� and
3�d�� narrowing of the gap-caustic channel width with an
increase in the wave propagation constant qx. The frequency
of the mode scales as p1/6 and the depth of the channel lo-
calization as p with the order p of the wave-guide mode. The
higher-order modes have higher frequencies and are guided
deeper into the medium. As a consequence, in the scaled

variables �̄�� / p1/6 and n̄�n / p, the presentation in Fig. 3
is valid for modes of all possible orders. The dispersion re-
lations for long wavelengths reduce in the limit qx→0 in
both configurations to �� /� ��8p /3�1/6qx

5/6 known for the
wave-guide modes in the channel formed by the free surface
and the caustics in disordered granular packing �7,8� �Fig.
1�c��. The width of the channel scales as nc� �� /qx�6�qx

−1

��−6/5. Periodicity in the packing of spheres is not impor-
tant for these modes, which have the wavelength signifi-
cantly exceeding the diameter of the spheres.

In the � configuration the range of accessible frequencies
is bounded as shown in Fig. 3�a�. The maximum frequency

of the p mode �̄max is achieved for the maximum allowed
horizontal propagation constant qx=1 when the group veloc-
ity of the gap-caustic mode is equal to zero. Correspondingly
there exist the deepest position of the gap surface n̄g

max, the
shallowest position of the caustics n̄c

min, and the minimum
channel width all realized at qx=1 as can be seen in Fig.
3�b�.

As Fig 3�c� shows, in the � configuration, the frequency

of the g/c mode diverges ��̄� �1 /2−qx�−1/6� accompanied by
divergence of both phase and group velocities when qx
→1 /2. In this limit both channel boundaries penetrate infi-

nitely deep into the medium n̄g� n̄c� �1 /2−qx�−1→� but the
channel width remains finite n̄c− n̄g→2. The closest to the
surface position of the caustics n̄c

min is achieved at qx�0.42
�see Fig. 3�d��.

The prediction for the � configuration of modes with in-
finitely high frequencies is the consequence of the possibility
of infinite medium rigidity assumed in the model �max�n�
=�max�1�n1/6. In reality, in granular packing, the growth of
rigidity with depth will necessarily saturate as the rigidity of
the granular packing cannot exceed the rigidity of individual
grains. Figures 3�b� and 3�d� permit visualization of the in-
fluence of a maximum rigidity existence in the medium on
the phenomenon of gap/caustic wave guiding. Let the rigid-
ity growth described by Hertz-Mindlin theory saturate
abruptly at a depth n=nsat ��max�n��n1/6 for n�nsat,
�max�n��nsat

1/6 for n�nsat� marked in Figs. 3�b� and 3�d�.
Then all the parts of the caustic surface, which are below the
horizontal level n̄sat, cannot be physically realized. The wave
guiding will be possible only in the restricted interval of
propagation constants qx and only if n̄sat exceeds n̄c

min. In the
� configuration for n̄sat� n̄c

min the gap/caustic channeling is
allowed for qsat

min�qx�1, where qsat
min is determined by the

intersection point of the saturation level with caustic level

in Fig. 3�b�. Wave guiding in the frequency band 0��̄

��̄sat
min �see Fig. 3�a�� cannot take place. In the � configu-

ration the saturation level for n̄sat� n̄c
min intersects the caustic

level in two points qx=qsat
min and qx=qsat

max�1 /2 and the gap-
caustic wave guiding is allowed only for qsat

min�qx�qsat
max

�1 /2. Consequently as soon as the physical reality of satu-
ration of the medium rigidity growth with depth is taken into

account, the theory predicts a finite frequency band �̄sat
min

��̄��̄sat
max as shown in Fig. 3�c� for the existence of the

gap-caustic guided acoustic modes. In summary if the
growth of the granular medium rigidity with depth saturates
at the level n̄= n̄sat, exceeding the shallowest position of the
caustic n̄c

min �see Figs. 3�b� and 3�d��, then the wave-guiding

phenomena persist only for qsat
min�qx�1 ��̄sat

min��̄��̄max�
in the � configuration �Figs. 3�a� and 3�b�� and only for

qsat
min�qx�qsat

max�1 /2 ��̄sat
min��̄��̄sat

max� in the � configura-
tion �Figs. 3�c� and 3�d��. The gap-caustic wave-guiding phe-
nomenon completely disappears if n̄sat� n̄c

min.
Figures 3�b� and 3�d� also describe the case of existence

of a minimum positive medium rigidity, which could result
from adhesion between the spheres or the formation of liquid
bridges between the spheres in the presence of moisture
�29,30� both providing in the medium an internal pressure
unrelated to gravity. Let us assume that this additional pres-
sure is numerically equal to the pressure created by gravity at
a depth n=nadh. Then, the influence of the increased adhesion
can be associated with the downward motion of the horizon-
tal level n̄= n̄adh, corresponding in the modified coordinates
n̄→ n̄adh+ n̄ to mechanically free surface of the medium
�7,8�, as shown in Figs. 3�b� and 3�d�. As long as n̄= n̄adh
intersects the predicted level n̄= n̄g at some qx=qadh

min, wave
guiding between the gap and the caustics �Fig. 1�e�� in the
region 0�qx�qadh

min is replaced by wave guiding between the
mechanically free surface, which in the coordinate system of
Figs. 3�b� and 3�d� is located at n̄= n̄adh, and the caustic �7,8�.

VITALYI GUSEV AND VINCENT TOURNAT PHYSICAL REVIEW E 78, 036602 �2008�

036602-6



Adhesion introduces a low-frequency cutoff for gap-caustic
channeling �̄��̄adh

min �see Figs. 3�a� and 3�c��. To find a dis-
persion relation for the generalized mode guided between the
caustic, and either the gap or the surface, the � roots of Eq.
�9� should be found for nmax=nc and nmin=max�ng ,nadh�. In
summary, if there exists adhesion between the grains, which
creates an internal pressure equivalent to the gravity-induced
pressure at some depth n̄= n̄adh in the packing without adhe-
sion �see Figs. 3�b� and 3�d��, then for the wave numbers qx,
satisfying the condition n̄g

g/c�qx�� n̄adh, the gap-caustic wave

guiding in the domain 0�qx�qadh
min �0��̄��̄adh

min� is re-
placed by surface-caustic wave guiding. The physics of this
is clear. The existence of the minimum rigidity in the me-
dium introduces the minimum value for �max. The frequen-
cies lower than this threshold value cannot be stopped by the
gap and they reach the mechanically free surface. In the �

configuration the opportunity for g/c wave guiding com-
pletely disappears when n̄adh� n̄gap

max.
For illustration, the dispersion relations and the bound-

aries of the channel for the � configuration are shown in
Figs. 4�a� and 4�b� for the case n̄adh� n̄gap

max, and in Figs. 4�c�
and 4�d� for the case n̄adh� n̄gap

max. In the case n̄adh� n̄gap
max

�Figs. 4�a� and 4�b�� the gap as an upper boundary of the
channel is replaced for 0�qx�qadh

min by the mechanically free
surface located at n̄= n̄adh in Fig. 4�b�. In the case n̄g

max

� n̄adh �Figs. 4�c� and 4�d�� the gap-caustic wave guiding is
completely replaced by surface-caustic wave guiding. These
replacements lead to the modification of the dispersion rela-
tions for the wave-guide modes �compare continuous s/c and
dashed g/c curves for surface/caustic and gap/caustic chan-
neling in Figs. 4�a� and 4�c�� and also to the shift of the

lower boundary of the channel, i.e., of the caustic �compare
continuous n̄c

s/c and dashed n̄c
g/c curves in Figs. 4�b� and 4�d��.

More complicated phenomena could be expected when
the granular medium is not semi-infinite, but just a layer of
thickness nb on a substrate. To avoid analysis of the substrate
motion we assume it to be infinitely rigid. Then any motion
at depths n̄� n̄b is forbidden. There is an obvious difference
between the case of rigidity saturation at the depth n̄= n̄sat
discussed above �see Figs. 3�b� and 3�d�� and the existence
of the rigid bottom at the same level n̄= n̄b= n̄sat. The satura-
tion surface completely eliminates the possibility of gap-
caustic channeling in domains where n̄c

g/c� n̄b= n̄sat, while
the rigid bottom potentially replaces in the same domains
gap-caustic wave guiding by gap-bottom wave guiding. The
other important point is the possibility for existence of two
modes of the same order p in the case where the lower
boundary of the channel is fixed. The possibility for exis-
tence of two p modes, high-frequency �HF� mode and low-
frequency �LF� mode, in a gap-bottom channel can be as-
cribed to the diminishing of the channel width with
increasing frequency. This, in turn, is caused for the fixed
lower boundary �bottom� of the channel by the penetration of
the upper boundary �gap� deeper and deeper into the depth of
the medium with increasing frequency, because, to stop up-
ward propagation of high frequencies the forbidden band
edge, �max should be higher than one to stop low frequen-
cies. This condition is achievable for larger rigidities, that is,
at larger depths from the surface than for low frequencies.
Simultaneously, the rays of high frequencies have larger ver-
tical propagation constants qy for a fixed horizontal propaga-
tion constant qx than the rays of low frequencies and, corre-
spondingly, the field oscillates faster along the vertical
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coordinate in HF acoustic mode than in LF acoustic mode.
Recall that the physical meaning of the order p of the mode
is the number of half-oscillations of the acoustic field at the
width of a wave guide �28�. This analysis demonstrates that
there are, in principle, two ways to get the same number p of
vertical oscillations of the field across the gap-bottom
channel—at lower frequencies in a wide channel, and at
higher frequencies in a narrow channel located closer to the
bottom than the first one.

Consequently, the existence of the rigid bottom could lead
not just to a replacement of a single gap-caustic mode by two
gap-bottom modes in the domains where n̄c

g/c� n̄b but could
also introduce a gap-bottom mode additional to a gap-caustic
mode in the domains where n̄c

g/c� n̄b, without influencing on
the gap-caustic mode. In other words, the existence of the
rigid bottom, even below the gap-caustics channel, could
modify the frequency spectrum of the wave-guide modes in
the medium.

Potentially different situations arise in cases when n̄b
� n̄c

min and there are intersections of n̄= n̄b with n̄= n̄c
g/c �Figs.

5�b� and 5�d�� and in the case when n̄b� n̄c
min and the rigid

boundary completely screens the caustic from the down-
wardly propagating rays �Figs. 6�b� and 6�d��. The possible
intersections of the bottom level n̄= n̄b with the gap level n̄

= n̄g
g/c of the gap-caustic modes in Figs. 5�b� and 5�d� play no

role, because the positions of the gap for gap-bottom modes
should be redefined. The generalized dispersion relation for
the modes which are guided by the gap and either by the
caustic or by the rigid boundary can be obtained by substi-
tuting nmax=min�nb ,nc� and nmin=ng in Eq. �9�.

Numerically evaluated characteristic cases are illustrated
in Figs. 5 and 6. It can be seen that indeed two p modes,
which we distinguish as high-frequency �HF� modes �̄H and
low-frequency �LF� modes �̄L, exist. For sufficiently long
wavelengths �qx�1� these two modes are both guided be-
tween the gap and the bottom. If n̄b� n̄c

min then in both con-
figurations when for qx=qb

min, the bottom level where n̄= n̄b
intersects the level n̄= n̄c

g/c of the caustic for the gap-caustic
mode, the gap-bottom channeling of the LF mode is trans-
formed into its gap-caustic channeling �see Figs. 5�b� and
5�d��. The gap-bottom channeling of the HF mode starts to
coexist with gap-caustic channeling of the LF mode. In the �

configuration this situation persists until a maximum allowed
value of the propagation constant qx=1 is reached, as shown
in Fig. 5�b�; on the other hand, in the � configuration, after
the second intersection of n̄= n̄b with n̄= n̄c

g/c at qx=qb
max, the

LF mode returns to channeling between the gap and the bot-
tom as can be seen in Fig. 5�d�. In summary the LF mode

(a)

(b)

(c)

(d)

g/c

g/c
g/b

g/b

g/b
g/c

g/b

g/c

g/b

g/b

g/c
g/b

g/b

g/b

g/b

LF waveguide

HF waveguide

LF waveguide

HF waveguide

0.2

0

0.4

0.6

0.8

1

1.2

1.4

10.80.60.40.20
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.001

0.01

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1 0 0.2 0.6 0.8 1
0.001

0.01

0.1

1

10

100

1000

1

0.01

0.1

1

10

0

10

10

1

0.4

0 0.2 0.6 0.8 10.4

10

0.1

0.01

0 0.5

1

0 0.51

10

1/2

Ω

n
g/b
g (ΩH)

n

qx

qx

qx

qx
qmin
b

ΩL

ΩH

ng/c
g

nb

Ω

ΩH

qmin
b

qmax
b

n
g/c
c

ng/c
c

n
g/c
g

qmax

ng/c
c

ng/b
g (ΩH)

n
g/c
c

nb

nb

ng/b
g (ΩH)

nb

n

nb

ΩL

n
g/b
g (ΩL)

nb ng/c
c

n
g/b
g (ΩL)

n
g/c
c n

g/b
g (ΩH)

z x

y,�g ⊕

z

y, �g

x

⊗

n
g/c
g

ng/b
g (ΩL)

ng/b
g (ΩL)

FIG. 5. Influence of a finite depth of granular medium on the wave-guiding phenomenon. Two types of guided acoustic modes in the
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travels between the gap at a depth n̄= n̄g
g/b��̄L� marked by

n̄= n̄g
g/b��̄L� in Figs. 5�b� and 5�d� and either the bottom at a

depth n̄= n̄b or the caustic at a depth n̄= n̄c
g/c, depending on

which of these two surface is closer to the gap. When the
gap-caustic �g/c� wave guiding of the LF mode is replaced
by its gap-bottom �g/b� wave guiding �for 0�qx�qb

min in the
� configuration, Fig. 5�b�, and for 0�qx�qb

min and qb
min

�qx�qb
max in the � configuration, Fig. 5�d�� the position of

the upper boundary of the channel �the gap� is modified
�compare dashed curves marked by n̄g

g/c and curves marked
by n̄= n̄g

g/b��̄L� in Figs. 5�b� and 5�d��. The HF mode is an
additional mode introduced by the presence of a rigid bot-
tom. It always travels between the bottom at a depth n̄= n̄b

and the gap at a depth n̄= n̄g
g/b��̄H�, marked by n̄g

g/b��̄H� in
Figs. 5�b� and 5�d�, even when the bottom is below the caus-
tic at a depth n̄= n̄c

g/c. Two modes coexist for all 0�qx�1 in
the � configuration �Figs. 5�a� and 5�b�� and simultaneously
disappear for qx�qx

max�qx
max�1 /2� in the � configuration

�Figs. 5�c� and 5�d��.
When n̄b� �n̄c

g/c�min �as shown in Fig. 6�, the rigid bottom
completely screens the caustic and only gap-bottom channel-
ing can take place. Both LF and HF modes are traveling
between the bottom at a depth n̄= n̄b and the gap, however,

the positions of the gaps n̄= n̄g
g/b��̄L� and n̄= n̄g

g/b��̄H�

�marked in Figs. 6�b� and 6�d� by n̄g
g/b��̄L� and n̄g

g/b��̄H�,
respectively� are different, and both are different from the
position of the gap in gap-caustic wave-guiding configura-
tion presented by dashed curves in Figs. 6�b� and 6�d�. The
HF mode travels in a narrower and deeper channel closer to
the bottom than the LF mode. Two modes coexist for all 0
�qx�1 in the � configuration �Figs. 6�a� and 6�b�� and
simultaneously disappear for qx�qx

max�qx
max�1 /2� in the �

configuration �Figs. 6�c� and 6�d��.
This analysis shows how anisotropy influences the chan-

neling of the LF and HF modes. While in the � configura-
tion both the LF and HF modes coexist in the complete do-
main 0�qx�1 of the propagation constants �see Figs. 5�a�
and 5�b� and Figs. 6�a� and 6�b�� in the � configuration, on
the other hand, the frequency gap between the modes shrinks
progressively with increasing qx until they simultaneously
disappear at qx=qx

max�1 /2. Wave guiding does not exist in
the � configuration for the larger �qx�qx

max� propagation
constants.

CONCLUSIONS AND PERSPECTIVES

Although the details of the analytical theory have been
developed only for the acoustic modes in unconsolidated or-
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FIG. 6. Influence of a finite depth of granular medium on the wave-guiding phenomenon. Two types of guided acoustic modes in the
microscopically periodic and macroscopically inhomogeneous medium on the rigid bottom located at a depth n̄= n̄b for the case n̄b� n̄c

min of

the complete screening of the caustic by the bottom. The dispersion relations �̄L,H=�̄L,H�qx� for the low-frequency and high-frequency

modes are presented by the curves marked by �̄L and �̄H, respectively. The positions of their undersurface channels in depth are grey in the
insets of �b� and �d�.
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dered packing of spherical elastic grains under gravity, the
wave-guide modes described here are universal in that they
pertain to wave propagation in general—straightforward ex-
amples include electromagnetic propagation in inhomoge-
neous photonic crystals or acoustic wave motion in inhomo-
geneous composite materials. The theory confirmed through
the analysis of the dispersion relations that natural subsur-
face channels for guiding of acoustic waves can exist due to
the reflection of the acoustic waves at caustic and Bragg
reflection by the granular lattice, the reflecting surfaces sepa-
rated in space owing to the natural inhomogeneity of the
phononic crystal. The positions of the subsurface gap-caustic
channel for all allowed wave propagation constants, for the
modes of different order p, and for different orientations of
the granular crystal relative to the direction of gravitational
acceleration have been predicted. The theory predicts that
two types of guided modes can exist in the unconsolidated
granular crystal layer on the rigid substrate, low-frequency
and high-frequency modes of various order p can simulta-
neously propagate in partially overlapping under-surface
channels. As well, the theory shows the influence of the satu-
ration of medium inhomogeneity, adhesion between the
grains, and the anisotropy of the granular crystals on the
wave-guiding phenomenon.

The future development of the theory should address the
analysis of the low order �p�3� modes, because the geo-
metrical acoustics approximation accepted by us here could

be quantitatively imprecise in this limit. The theory could
also be improved for cases where the gap is so close to the
free surface of the granular crystal that the interaction of the
channel with the surface through the evanescent acoustic
field between them becomes important.

It is not difficult to envision wave-guiding phenomena in
a wide variety of granular inhomogeneous materials ranging
from ensembles of macroscopic elastic spheres constructed
as efficient absorbers of sound and shock waves �31� or for a
purpose of acoustic experiments �32� to nanotechnology,
where the nanospheres are arranged in periodic arrays in
sedimentation process �33–35�. The wave-guide acoustic
modes of the types predicted here could be excited in the
process of epitaxial growth of granular single crystals driven
by vibrations �36,37� and of vibrational annealing of granular
crystals �37,38�. Furthermore, the existence of these new
wave guide modes suggest application of the monitoring of
their propagation in unconsolidated granular phononic crys-
tals to non-destructive analysis in a manner similar to how
Rayleigh surface acoustic waves and Lamb wave-guide
acoustic modes �28� are currently used in nondestructive
testing and material evaluation �39�.
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